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The problem: We are often presented with a waveform or spectrogram for which it is helpful to 

suppress details in noise-dominated sections of time (in the waveform) or of time-frequency (“T-F”, 

in the spectrogram).  See Figure 1, which uses the standard SpeechMark
®
 toolbox display, ‘sgram’. 

Figure 1.  Standard narrow-band spectrogram of the word bead spoken in moderate noise.  Female 

speaker, 44.1 kHz sampling.  Notice the horizontal stripes of higher power on 1-kHz multiples, especially 

extending across all times at 12, 13, 14, and 17, 18, and 19 kHz, as well as at other frequencies for briefer seg-

ments of time.  Apart from these stripes, the noise floor appears to be ~ -275 dB.  The frequent fluctuations as 

much as 40 dB below this level merely introduce variability that represents visual clutter, not meaningful 

measurements of the speech, nor even of other environmental or speaker sounds. 

In keeping with the knowledge-based focus of SpeechMark, we are particularly interested in 

solutions based on broad principles rather than ones that must be determined in a subtle, compli-

cated, or ad hoc fashion, whether by the user or by SpeechMark.  That is, we will look to solutions 

based on a combination of: 

 mathematical properties,  

 statistical estimators that are insensitive to probability-distribution variation (so-called 

robust estimators), and  

 knowledge of physical acoustics, speech physiology, etc.   



Such principled solutions are amenable to packaging as “black boxes” into larger systems, 

because the principles apply broadly.  Users of the larger systems can therefore understand and trust 

the principles’ validity despite the packaging. 

A solution: In many cases, there is a principled solution to this problem: Determine the sig-

nal/noise ratio (SNR), and use a threshold unity or somewhat higher to distinguish noise-domi-

nated from information-carrying samples.  For convenience, we may also speak (here) of the noise 

as the “background”, at least when it appears with constant amplitude and spectrum, essentially the 

conditions of statistical stationarity.  The signal or non-noise component(s) of the waveform we 

may refer to as the “foreground”. 

Figure 2.  (a: top) Spectrum of stationary component of the spectrogram; (b: bottom) “foreground-to-

background ratio” or “signal-to-noise ratio” spectrogram.  At each frequency separately, the algorithm 

identifies the “background noise” as the spectrogram’s minimum power value, taken over all times.  In the pre-

sent case, this spectrum correctly includes the substantial peaks, ~10 dB, at 12, 13, 14, and 17, 18, and 19 kHz, 

as well as some others for which we can see evidence in Figure 1 (e.g., 8 kHz).  As a result, the spectrogram of 

Figure 1 can be divided by this spectrum at every moment in time to produce a T-F representation of the fore-

ground-to-background or signal-to-noise ratio: The noise peaks are virtually absent from this image (< 3 dB, 

appearing here as very dark blue).  When fluctuations below unity (0 dB) are raised to unity, the result is a 

“SNR spectrogram” that strongly deemphasizes both the magnitude of the stationary background and its vari-

ability in time, but it retains and even emphasizes the structure of the foreground or signal.  In this case, the 

SNR displays 70 dB of meaningful foreground or signal dynamic range.  It does not include the original spec-

trogram’s bottom 40 dB, which is caused only by temporal fluctuations in the stationary background. 

Computationally and acoustically, this might mean performing spectral subtraction on the level 

of noise.  Visually, it might mean removing all fluctuations below this threshold (i.e., raising the 



amplitude to the level of ), in order to avoid distracting the eye with these fluctuations in a spec-

trogram image.
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In typical spectrogram displays, removing the fluctuations would mean spreading the colors — 

dark blue through bright red, here — over only the dynamic range of the signal, rather than over the 

much broader range of noise fluctuations and signal.  In Figure 1, for instance, these fluctuations 

appear to be centered on ~ -275 dB (the “noise floor”), and therefore account for the bottom 40 dB, 

out of a total range of 110 dB: More than one-third of the color spread is “wasted”, only describing 

these irrelevant fluctuations. 

But how to determine this noise-floor level in a principled, automatic fashion? 

(a) If the noise floor of the waveform is already known, whether in time, frequency, or T-F, 

then we may use the criterion of SNR   to suppress noise details.  

(b) If it is not known in advance, we may estimate the noise spectrum from the statistically 

stationary or background part of the spectrogram; we would use, at each frequency, the 

minimum power across all times [as in the SpeechMark functions ‘estnoisesig’, 

‘estnoisesig_std’, and ‘estnoisesgram’].  Alternatively, we could estimate the T-F noise floor 

as being 30 bits (90 dB) down from its peak, on the assumption of a 15-bit digitized wave-

form.  In general, we would probably use the maximum of these two estimates at each time, 

frequency, or T-F.  The result is shown in Figure 2 [from the function ‘sgram_snr’, which 

uses ‘estnoisesgram’
2
]. 

Using the minimum power over all times is again a principle-based estimate.  The power of 

unrelated sources is additive, so this rule properly identifies the background component at a given 

frequency, provided that the unrelated foreground components are silent (at that frequency) at least 

occasionally within the time interval available.  That is, this principle quite properly associates the 

absence of any foreground signal with a power minimum. 

We can now reconstruct a more helpful spectrogram of the waveform itself.  Note that the SNR 

spectrogram (Figure 2b) is constructed by dividing the original spectrogram by the noise level at 

each frequency separately.  It is then rendered visually more helpful by clipping from below at  to 

suppress downward noise fluctuations: the bottom 40 dB of Figure 1.  Reconstructing the spectro-

gram merely reverses this process, though crucially keeping the thresholding.  That is, at each fre-

quency, the noise level is multiplied by the SNR spectrogram after the latter has been clipped at .  

(Note that this clipping, too, is principle-based: Unity has special significance for SNR.) 

The result appears in Figure 3.  This shows the signal component(s) as well as the original fre-

quency dependence of the noise spectrum, but it does not contain the temporal fluctuations of the 

noise, at least in the lower-amplitude direction.  (In the higher-amplitude direction, noise only 

accounts for ~6 dB.) 

As a result, some features are now much more apparent: e.g., the sustained power at 12.8, 14.9, 

and 16.7 kHz from 0.6 to 0.9 sec (perhaps high-order formants?); the final power at 900 Hz and 

1.3 sec (final exhalation?); and the narrow linear feature at 3500 Hz and 1.25 sec. 
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 Following this with subtraction of  produces exactly the same result as spectral subtraction.  The two techniques have 

identical information.  However, performing the subtraction makes any subsequent visual presentation slightly more 

difficult than raising the spectrogram floor. 
2
 In fact, the typical noise distribution has a mode at zero amplitude, rendering a naïve computation of the minimum-

power level severely biased downward; ‘estnoisesgram’ uses estimators that deal with this complication. 



 

Figure 3.  Enhanced spectrogram image based on automatic determination of the stationary back-

ground.  The image is constructed directly from Figure 2, i.e., suppressing fluctuations below unity (0 dB), as 

shown in 2b, and multiplying the result by the spectrum of 2a.  This properly reinserts the background peaks, 

e.g., 12-14 kHz, as in the original spectrogram; but it strongly reduces the background fluctuations, as in the 

SNR spectrogram.
3
  This better allows the visual appearance to emphasize the foreground content of the wave-

form.  For example, the three encircled features at 0.6-0.9 sec, the one at 1.25 sec, and the one at 1.3 sec are 

much easier to notice than in Figure 1. 

Extensions: A few extensions are straightforward.  First, the resolution of the frequency bands 

of the spectrogram affects the precision of the SNR determination, but the underlying principles are 

still valid regardless of resolution.  If only the amplitude contour of the signal is available, then its 

square is a “spectrogram” with a single frequency band.  The noise “spectrum” becomes a scalar, 

the total noise power.  The SNR computation, thresholding, and reconstruction of the spectrogram 

(squared amplitude), proceed as before.  The noise power has the same complications as in the mul-

tiple-frequency case — a mode at zero, requiring careful debiasing — but the computation remains 

valid. 

A slightly more sophisticated variant of this would estimate the noise spectrum and select a sin-

gle value, such as its minimum (a very cautious choice), to set the frequency-independent threshold.  

This would be a crude variant of the SNR processing developed here, but, as we shall see, noticea-

bly better than no thresholding at all. 
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 The color scale has a different offset than in Figure 1, but the dynamic range is properly marked. 



In fact, the SpeechMark toolbox uses exactly this variant for visualization.  It was used even in 

the original spectrogram, Figure 1.  Among all debiased noise estimates in the spectrum of Fig-

ure 2a, the minimum over all frequencies — the value at 22 kHz in this case — was selected, and all 

smaller spectrogram components were raised to this single, low floor.  Figure 4 shows the result of 

omitting this operation: The dynamic range is set by the actual minimum value across all non-zero 

spectrogram components (image pixels), rather than by the debiased estimate.  This results in 

~25 dB more “waste” of the color spread, so even some components that were visible in Figure 1, 

such as the feature at 1600 Hz, 0.45 sec (a formant inside the closed mouth?), are now obscured. 

Figure 4.  Spectrogram of raw signal, no noise handling.  Without even the minimal noise-background 

estimation and suppression used in Figure 1, this spectrogram display obscures still more waveform fea-

tures, such as that marked at 0.45 sec, because the dynamic range has (unhelpfully) expanded to ~135 dB. 

The final extension deals with non-stationary noise backgrounds.  As usual, if this is slowly 

varying, then it is appropriate to estimate it and compute the SNR spectrogram over short intervals, 

perhaps blending the estimates across adjacent intervals to improve their accuracy.   

Conversely, if the background is rapidly varying, it is appropriate to regard the result as a back-

ground itself, a highly fluctuating one.  However, the estimates, and the resulting SNR computa-

tions, will likely be less useful.  In particular, any background estimates will likely understate the 

background power.  The result will be to set any estimate-based threshold to a particularly low 

value.  In this sense, the SNR technique here is conservative, allowing subsequent processing to 

make use of further information if available, or to use some higher, more aggressive threshold if 

desired. 


