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Abstract: The goal of clinical speech analysis is to describe abnormali-
ties in speech production that affect a speaker’s intelligibility. Landmark
analysis identifies abrupt changes in a speech signal and classifies them
according to their acoustic profiles. These acoustic markers, called land-
marks, may help describe intelligibility deficits in disordered speech. As a
first step toward clinical application of landmark analysis, the present
study describes expression of landmarks in normal speech. Results of the
study revealed that syllabic, glottal, and burst landmarks consist of 94%
of all landmarks, and suggest the effect of gender needs to be considered
for the analysis.
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1. Introduction

Auditory-perceptual analysis is the main method for clinical assessment of disordered
speech; however, results obtained through this type of analysis are susceptible to intra-
and inter-rater variabilities. Acoustic analysis of speech can supplement the auditory-
perceptual judgment by providing consistent measurements across speakers. Despite
this advantage, adoption of acoustic tools into clinical practice has been relatively
slow. The hindrance can partly be attributed to the absence of a tool that quickly ana-
lyzes and generates measurements that are relevant to abnormality in speech produc-
tion and perception.

Currently available clinical acoustic-analysis methods require manual analysis
of the visual representation of a signal, such as a spectrogram, to describe the signal
abnormality. This requires considerable time and labor, making such tools impractical
for busy clinicians. Many authors have put substantial research effort in to automate
the analysis for clinical assessment of disordered speech (Berisha ez al, 2013; Bocklet
et al., 2012; He et al., 2013; Lustyk et al, 2014; Maier et al., 2009; Middag et al.,
2009; Zhou et al., 2012). Landmark (LM) analysis is a novel approach that character-
izes speech with acoustic markers that are developed based on the LM theory of
speech perception. This theoretically-driven, knowledge-based approach may serve as
the basis of a tool for automatic intelligibility assessment. A few authors have exam-
ined the clinical potential of the approach. These studies have shown that the LM-
based systems are able to detect acoustic differences between normal and dysarthric
speech (DiCicco and Patel, 2008; Chenausky ez al, 2011). While their findings are
encouraging, these studies have included a small number of speakers [i.e., | normal
speaker in DiCicco and Patel (2008), and 12 normal speakers in Chenausky et al.
(2011)], and their outcomes were not reported based on individual acoustic markers.
Accordingly, how the LM-based analysis would characterize normal speech has not
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been well-defined. As the individual markers are designed to correspond to particular
articulatory gestures, they would provide information relevant to intelligibility.

Historically, speech production has been described by articulatory features of
speech sounds. An example of this is distinctive feature theory by Chomsky and Halle
(1968). The theory characterizes a speech sample with a bundle of the articulatory fea-
tures, each of which describes the sound’s place, manner, and laryngeal features. The
presence or absence of these features are indicated in a binary system such as [+voice]
and [—voice]. The work by Chomsky and Halle (1968) was extended by Kenneth
Stevens who sought knowledge-based acoustic correlates of these articulatory features
and their relationship with speech sound perception (Stevens, 1989). The LM theory of
speech production and perception was born out of this work (Liu, 1996; Stevens,
2002). In LM theory, articulatory movement creates abrupt changes in the speech sig-
nal that are called LMs. It is postulated that listeners make judgments of which speech
sound was produced based on an acoustic profile of the LMs.

Intelligibility is the primary measurement of communicative effectiveness.
Despite an extensive investigation, defining acoustic correlates for intelligibility has
been difficult. The difficulty is partly due to a complicated interaction between percep-
tual and cognitive systems. It has been well documented that the listener’s cognitive
system can “fill-in” missing acoustic cues, thus the acoustic signal alone cannot
account for intelligibility (Cooke, 2006). Yet speech perception does not occur without
a response of the auditory system to physical changes in a signal, and there is ample
evidence for a contrast in signal serving as the basis of speech perception (see
Kluender et al., 2003 for a thorough review on this topic). It has also been well docu-
mented that there is a distinct acoustic difference between major classes of speech
sounds. For example, while approximants and vowels generate a periodic signal rich in
harmonic energy, voiceless fricatives such as /s/ generate an aperiodic signal at high
frequency (Stevens, 2000). Increasing acoustic contrast between different classes of
articulatory features could result in greater intelligibility. As a LM analysis is designed
to detect moments with such contrast in the signal, it is possible that its output would
serve as a biomarker for intelligibility.

SpeechMark® is a semi-automated LM-based speech analysis program (Boyce
et al., 2012), based on works by Liu (1996) and Howitt (2000). It is a knowledge-based
tool, which not only analyzes physical aspects of the signal but also applies acoustic
knowledge of articulatory features in the process of analysis. In a typical implementa-
tion, the algorithm first computes a spectrogram with a 6 ms Hanning window every
I ms. The spectrogram is then divided into the six frequency bands, ranging from
0.0-0.4, 0.8-1.5, 1.2-2.0, 2.0-3.5, 3.5-5.0, and 5.0-8.0 kHz (Howitt, 2000; Liu, 1996).
The spectrogram then goes through “fine” and “coarse” processing. Both of these pro-
cesses vary in smoothing values, time frame for detection of band-energy rise, and
threshold for peak detection. Subsequently, energy peaks are localized and subjected to
the final phase of the program in which a type of LM is determined based on patterns
of changes in the frequency bands.

The version of SpeechMark® (Speech Technology and Applied Research
Corp., Bedford, MA) used for this study (i.e., SpeechMark™ WaveSurfer Plug-in) gen-
erates one vowel LM and several classes of abrupt LMs, including glottal, burst, syl-
labic, unvoiced frication, and voiced frication. These LMs are expressed with positive
or negative signs which indicate their onset or offset. The final output of the analysis is
a sequence of LMs, such as “[+g] [+s] [—g] [+b] [-b].” An example of displayed out-
put is shown in Fig. 1. The abrupt LMs can be categorized into two types: those that
describe laryngeal events and others that describe oral events. Glottal LMs, denoted as
[+g] and [—g], describe instances of voicing elicited by vocal fold vibration. It should
be noted that onset and offset may not necessarily coincide with the physical onset and
offset of the vocal fold vibration. Rather, these LMs are generated at moments where
sufficient acoustic evidence for the presence of voicing is indicated. The presence of
voicing can be confirmed by two rules: (1) a region having high harmonic to noise
ratio (HNR), and/or (2) a region adjacent (within 50 ms) of another region having high
HNR and having similar or higher power and/or similar spectral tilt to the high HNR
region. Burst, syllabicity, unvoiced and voiced frication LMs describe oral events.
Acoustic rules of all abrupt LMs are described in Table 1.

It is expected that some variations in the expression of LMs exist among nor-
mal speakers even when the analysis is performed on the same speech material. Like
other acoustic speech analysis tools, SpeechMark® analyzes speech as uttered. It is well
recognized that a number of factors can influence the acoustic profile of speech.
Examples include speaker’s identity (e.g., age, gender, and dialect), speaker’s emotional
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Fig. 1. (Color online) Results of LM analysis with SpeechMark® Plug-in for WaveSurfer, Windows Edition,
Version 0.1.36. The top panel shows band energies in the six frequency ranges. The bottom panel shows LMs
with a waveform.

state, and speech production style (e.g., conversational vs Lombard speech). Gender-
based differences in speech acoustics are especially well-recognized in the literature.
The most prominent difference is the fundamental frequency in male and female
speech. In order to minimize a possible effect of age and gender on the analysis,
SpeechMark® allows adjustment of frequency range based on age and gender of the
speaker. This option limits the maximum fundamental frequency for adult male speak-
ers to 220 Hz and female speakers to 350 Hz. Male and female speech also differ in
their spectral characteristics, such as formant frequency of vowels (Peterson and
Barney, 1952), acoustic parameters relevant to glottal characteristics (Hanson and
Chuang, 1999; Klatt and Klatt, 1990), and time-based measurement such as voice
onset time (Ryalls et al, 1997; Smith, 1978; Swartz, 1992). Therefore, it is possible
that these gender-based acoustic differences would be reflected in an expression of
LMs even after adjusting the fundamental frequency for the analysis.

Although acoustic analysis is a powerful tool for describing physical abnor-
malities in disordered speech, its incorporation into clinical practice has been hindered
by lack of an algorithm that quickly yields clinically meaningful data. A LM-based
program holds promise as emerging evidence shows that LM-based systems such as
SpeechMark® are able to detect acoustic changes in perceptually-different speech.
However, the expression pattern of the LMs in normal speech has not been well

Table 1. Acoustic rules for each type of LM. Note that the symbols and mnemonics are not intended to identify
underlying articulatory or phonetic events, only to suggest examples: syllabic, voiced frication, etc.

Symbol Mnemonic Rule

+g Glottal onset Beginning of sustained vocal fold vibration, i.e., of periodicity or of power and
spectral slope similar to that of a nearby segment of sustained periodicity

-g Glottal offset End of sustained vocal fold vibration

+b Burst onset At least 3 of 5 frequency bands show simultaneous power increases of at least

6dB in both the finely smoothed and the coarsely smoothed contours, in an
unvoiced segment (not between +g and the next —g)

—b Burst offset At least 3 of 5 frequency bands show simultaneous power decreases of at least
6 dB in both the finely smoothed and the coarsely smoothed contours, in an
unvoiced segment

+s Syllabic onset At least 3 of 5 frequency bands show simultaneous power increases of at least
6 dB in both the finely smoothed and the coarsely smoothed contours, in a
voiced segment (between +g and the next —g)

-s Syllabic offset At least 3 of 5 frequency bands show simultaneous power decreases of at least
6 dB in both the finely smoothed and the coarsely smoothed contours, in a
voiced segment

+f Frication onset At least 3 of 5 frequency bands show simultaneous power increases at high
frequencies and decreases at low frequencies (unvoiced segment)

—f Frication offset At least 3 of 5 frequency bands show simultaneous power decreases at high
frequencies and increases at low frequencies (unvoiced segment)

+v Voiced frication onset At least 3 of 5 frequency bands show simultaneous power increases at high
frequencies and decreases at low frequencies (voiced segment)

-V Voiced frication offset At least 3 of 5 frequency bands show simultaneous power decreases at high

frequencies and increases at low frequencies (voiced segment)
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defined. Clinicians must be able to compare data from their patients to normative data
in order to determine the degree of abnormality. Furthermore, the normative data also
help to understand the underlying mechanism of the abnormality. Characterizing the
expression pattern in normal speech is thus the first step toward developing a LM-
based program clinical tool. Therefore, the purpose of this study is to describe LM
expression in normal speech using clinical speech material.

2. Methods
2.1 Speech materials

Recordings of the Rainbow passage (Fairbanks, 1960) from Kay Elemetrics’
“Disordered Voice Database model 4337 were used for the study (Massachusetts Eye
and Ear Infirmary, 1994). The database includes speech samples from 53 adults, who
are native speakers of American English with normal voice and speech. It is frequently
cited in the disordered voice literature (e.g., Little er al, 2007; Shrivastav and
Sapienza, 2003; Zhang and Jiang, 2008). For this study, samples which had sampling
rates of less than 11 kHz were excluded. The resultant speaker group consisted of 15
adult females [mean age=37.8 yrs old, min=24, max =252, standard deviation
(SD)=38.1], and 21 adult males (mean age=238.81 yrs old, min=26, max=1>59,
SD =8.49). The sampling rate of the recordings was standardized at 22 kHz.

2.2 Sample preparation and acoustical analysis

>

The original speech files contained the first 12s of the “Rainbow Passage,” which is
widely used in the evaluation of speech and voice disorders (Fairbanks, 1960; Gilbert
and Weismer, 1974; Klostermann et al., 2008). For this study, the files were edited to
extract the first sentence: “When the sunlight strikes raindrops in the air, they act like
a prism and form a rainbow.” The beginning and end of the sentence were visually
confirmed on a waveform and spectrogram. These speech samples were analyzed with
SpeechMark® Plug-in for WaveSurfer, Windows Edition, Version 0.1.36 for the follow-
ing parameters: glottis LMs ([+g] and [—g]), burst LMs ([+b] and [—b]), syllabic LMs
([+s] and [—s]), unvoiced frication LMs ([+f] and [—f]), and voiced frication LMs ([+V]
and [—v]). In order to minimize the gender effect, the gender option was selected to
adjust the range of fundamental frequency for the speaker’s gender.

2.3 Statistical analysis

A difference in the average number of LMs between female and male speaker groups
was tested with a Welch two-sample #-test. A difference in the average number of LMs
between onset and offset LMs was tested with a Wilcoxon rank sum test. The level of
significance was set as p<0.05. The analyses were performed with R Statistical
Software version 3.1.0.

3. Results

The LM analysis of speech samples from all speakers generated a total of 2090 LMs.
The average number of LMs was 60.67 [standard error (SE)=1.11] for female speakers
and 56.19 (SE =1.49) for male speakers (Fig. 2). A two-way analysis of variance was
run to examine the effect of gender and age on the total number of LMs. The effect of
gender on the total number of LMs was significant, F(1, 32)=15.438, p=0.026. The
effect of age on the total number of LMs was not significant, F(1, 32)=1.598,
p=0.215. There was no significant interaction between the effects of gender and age
on the total number of LMs, F(1, 32)=0.348, p=0.559. A Welch two sample z-test
indicated that the difference between the male and female groups was significant,
t(34)=2.41, p < 0.02 (Fig. 2).

The average number of each LM for all speakers combined is shown in Fig. 3.
The [+s] was the most frequently occurring LM, followed by [+g], [—g], [—s], [+Db],
[-b], [-V], [-f], [+V], and [+f]. The data were further analyzed to examine whether
there is a difference in the number of onset and offset LMs. A total number of [+g]
and [—g] LMs differed only by 1 (407 and 406, respectively), which implies that the
numbers of these LMs should be equal to within =1 for any given recording. A
Wilcoxon rank sum test indicated that a greater number of onset LMs than offset
LMs were generated in [b] and [s] LMs (w=1165, p<0.001; w=931, p=0.001,
respectively). On the other hand, fewer onset LMs than offset LMs were generated in
[f] and [v] LMs (w=1332, p <0.001; w=221, p <0.001, respectively).

4. Discussion

The purpose of this study was to characterize the expression pattern of LMs in normal
speech with clinical speech material. The results of the study showed that [g], [b], and
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Fig. 2. Average number of LMs in female and male speakers. Error bars indicate standard errors.

[s] LMs comprise 94% of all LMs, occurring considerably more frequently than [f] and
[v] LMs. The rarity of [f] and [v] LMs is likely because their acoustic rules are more
specific and complex in comparison to the rules for other LMs. The primary condition
for detection of [f] and [v] LMs is a simultaneous power change in at least three of the
five frequency bands. This rule is also shared by [b] and [s] LMs. Detection of [f] and
[v] LMs requires meeting a secondary condition that the simultaneous power change
must occur in high frequencies. Additionally, a signal must satisfy a third condition,
the presence of a contrary change in low frequencies. The data from this study indicate
that it is infrequent to observe a signal change that satisfies all of these three
conditions.

It has been reported in the literature that speaker’s age and gender are possible
influencing factors for intelligibility and acoustic measures (Hazan and Markham,
2004; Jacewicz et al., 2009). The results of this study indicated that the age of our
speakers did not affect the total number of LMs. On average, female speech generated
a greater number of LMs than male speech, even with the adjustment made for speak-
er’s gender. An interesting hypothesis to consider is that the greater number of LMs in
female speech indicates greater intelligibility of their speech. It has been repeatedly
demonstrated that female speech is more intelligible than male speech (Bradlow et al.,
1996). A study that compared LM expression in conversational and clear speech has
shown that clear speech generated a greater number of LMs than conversational
speech (Boyce et al, 2013). Furthermore, it has been proposed that intelligibility is
influenced by contrast in a speech signal (Kluender et al, 2003). The greater number
of LMs in the female speech suggests that there were more abrupt acoustic changes.
Accordingly, while intelligibility of our speakers was not measured in this study, it is
possible that the number of LMs indicates the superiority intelligibility of female
speakers. Further studies are needed to explore the relationship between intelligibility
and LM expression.

Acoustic rules for the onset and offset LMs are symmetrically designed; how-
ever, the data from this study showed that the acoustic change elicited by articulatory
adjustment is not symmetric (except for glottal onset and offset, as expected). During

14 4
12
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Male

Average number of LMs

[+g] [g]l [+b] [b] [#s] [s] [#] [f] [+] [v]

Fig. 3. Average number of LMs for each type of LM in all speakers. Error bars indicate standard errors.
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phonation, the onset of vocal fold vibration is always accompanied by the offset of the
vibration, creating symmetric rise and fall of acoustic energy. Because glottal LMs are
designed to capture these acoustic changes, they occur in pairs. It is not surprising that
the number of onset LMs was greater than offset LMs for [b] and [s] LMs. These LMs
share acoustic rules for detecting moments of consonant production by vocal tract clo-
sure, only differing in the voicing rules. Some consonants have greater energy at their
onset than offset. For example, stop consonants are produced upon a release of an
obstruction in the vocal tract. The release creates a sudden rise in the acoustic power.
Acoustic power then decays after the release, thus the acoustic change is likely more
gradual at the end of the consonants. Fricative consonants are produced by turbulent
air flow that goes through a constricted point of the vocal tract. Acoustic power cre-
ated by the airflow is greatest at the onset and decays more gradually as the point of
constriction in the vocal tract is widened for the following sound. Consequently, the
moments that satisfy the acoustic rule of offset LMs, which is symmetric to the rule of
onset LMs, are likely to occur less frequently.

Several limitations should be noted. Because speech samples included in the
database were only 10 s long, the analysis was done with only one sentence of the
Rainbow passage. The database was designed to illustrate abnormal aspects of speech
with voice disorders, and 10s of speech may be sufficient for this purpose. However,
the amount of speech is likely not enough for intelligibility assessment. In a clinical set-
ting, intelligibility is measured with a series of sentences that represent comprehensive
phonemic repertoire of a language. One sentence clearly does not include all phonemes
of English. For this simple reason alone, it is likely that a greater number of sentences
are needed for developing automatized acoustic metrics for describing intelligibility
deficits. Furthermore, the distribution of LMs would depend on phonetic content of a
speech material, and analysis with the entire passage could have produced a different
result. The length of speech sample sufficient for obtaining data that represent normal
speech is unknown and needs to be determined for establishing normative data.
Another limitation of the study is a lack of evaluation on the effect of possible factors
that influence intelligibility. For example, gender, age, and dialect are known to affect
intelligibility as well as speech acoustics. The effect of age is not expected in the age
range of speakers examined in the study; however, the effect of dialect could not be
tested due to the lack of information. Because the sample size of this study is relatively
small, the effect of gender on LM expression was examined only for the total number
of LMs. It is likely that gender-based differences exist for each particular type of LM.
The gender effect on expression of each LM should be examined with a larger sample
size in future studies.

To the best of our knowledge, this study is the first to characterize LM expres-
sion in normal adult speech with clinical speech material. The results of this study
showed that LM expression varies among normal speakers even when standardized
speech material is used. The results also illustrated that the gender of a speaker signifi-
cantly influences LM expression. While the findings of this study should be confirmed
by a larger-scale study as noted above, the data from this study may provide a rudi-
mentary “blueprint” for future studies of normal and disordered speech.
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